
Eur. Phys. J. D 25, 181–200 (2003)
DOI: 10.1140/epjd/e2003-00242-2 THE EUROPEAN

PHYSICAL JOURNAL D

Toward an architecture for quantum programming

S. Bettelli1,a, T. Calarco2,3,b, and L. Serafini4,c

1 Laboratoire de Physique Quantique, Université Paul Sabatier, 118 route de Narbonne, 31062 Cedex Toulouse, France
2 National Institute of Standards and Technology, 100 Bureau Drive, Stop 8423, Gaithersburg, MD 20899-8423, USA
3 ECT*, European Centre for Theoretical Studies in Nuclear Physics and Related Areas, Villa Tambosi,

Strada delle Tabarelle 286, 38050 Villazzano, Italy
4 Istituto Trentino di Cultura, Centro per la Ricerca Scientifica e Tecnologica (ITC-IRST), Via Sommarive 18 - Loc. Pantè,

38050 Povo, Italy

Received 25 June 2002
Published online 30 July 2003 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2003

Abstract. It is becoming increasingly clear that, if a useful device for quantum computation will ever be
built, it will be embodied by a classical computing machine with control over a truly quantum subsystem,
this apparatus performing a mixture of classical and quantum computation. This paper investigates a
possible approach to the problem of programming such machines: a template high level quantum language is
presented which complements a generic general purpose classical language with a set of quantum primitives.
The underlying scheme involves a run-time environment which calculates the byte-code for the quantum
operations and pipes it to a quantum device controller or to a simulator. This language can compactly
express existing quantum algorithms and reduce them to sequences of elementary operations; it also easily
lends itself to automatic, hardware independent, circuit simplification. A publicly available preliminary
implementation of the proposed ideas has been realised using the C++ language.

PACS. 03.67.Lx Quantum computation

1 Quantum programming

1.1 Introduction and previous results

In the last decade the field of quantum computing has
raised large interest among physicists, mathematicians
and computer scientists due to the possibility of solving at
least some “hard” problems exponentially faster than with
the familiar classical computers [1]. Relevant efforts have
been concentrated in two directions: on one hand a (still
not so large) set of quantum algorithms exploiting features
inherent to the basic postulates of quantum mechanics has
been developed [2]; on the other hand a number of exper-
imental schemes have been proposed which could support
the execution of these algorithms, moving quantum com-
putation from the realm of speculation to reality (see a
review of basic requirements in DiVincenzo [3]).

The link between these two areas is a framework for
describing feasible quantum algorithms, namely a compu-
tational model, which appears to have settled down to the
quantum circuit model1, due to Deutsch [4], Bernstein and

a e-mail: bettelli@irsamc.ups-tlse.fr
b e-mail: Tommaso.Calarco@nist.gov
c e-mail: serafini@itc.it
1 Different computational models, involving physical systems

with continuous-variable quantum systems used as computa-
tional spaces, are far less developed and will not be consid-
ered in this paper. It should be noted however that any such

Vazirani [5] and Yao [6]. Though this is satisfactory from
the point of view of computational complexity theory, it is
not enough for a practical use (programming) of quantum
computers, once they will become available.

A few papers can be found in literature concerning
the problem of scalable quantum programming. An unpub-
lished report by Knill [7], gathering common wisdom of the
period about the QRAM model (see Sect. 2.1), moved the
first steps towards a standardised notation for quantum
pseudo-code pointing out some basic features of a quan-
tum programming language (as an extension of a conven-
tional classical language), though the interest was focused
mainly on quantum registers (see Sect. 3.1). This report
however did not propose any scheme for implementing an
automatic translation of the high level notation into cir-
cuit objects.

Sanders and Zuliani [8] extended the probabilistic ver-
sion of an imperative language (pGCL) to include three
high level quantum primitives (initialisation, evolution
and finalisation). The resulting language (qGCL) is expres-
sive enough to program a universal quantum computer,
though its aim is more to be a tool for verification of the
procedures against their specifications2 (i.e. for verifying

quantum device will most likely require very different interface
abstractions from quantum circuits.

2 This work was extended in Zuliani’s DPhil thesis (Oxford
University) submitted in July 2001, which however was not
available at the time of writing.

182 The European Physical Journal D

that a program really implements the desired algorithm)
than to be the starting point for translation of quantum
specifications to low level primitives. A related paper by
Zuliani [9] showed an interesting technique for transform-
ing a generic pGCL program into an equivalent but re-
versible one, which has a direct application to the problem
of implementing quantum oracles for classical functions
(see Sect. 5.2).

Ömer [10,11] developed a procedural formalism (QCL)
which shares many common points with the approach pre-
sented in this article about the treatment of quantum reg-
isters3. QCL is however an interpreted environment and is
not built on the top of a standard classical language. In
this language, just like in qGCL, non trivial unitary op-
erations are functions (qufunct or operator) instead of
objects (see Sects. 3.2 and 5.1), so that their manipulation
is subject to the function call syntax; hence automatic op-
erator construction (e.g. controlled operators) and simpli-
fication are very difficult to implement, if not impossible.
Last, no notion of parallelism for independent operators
is present (see Sect. 3.3).

In the following section, building on top of these pre-
vious works, a list of desirable features for a quantum
programming language is presented.

2 Desiderata for a quantum programming
language

A common theme in the field of quantum computation is
the attempt to think about algorithms in the new “quan-
tum way”, without being misled by classical intuition. It
could seem that describing quantum computer algorithms
in an almost entirely classical way would hide rather than
emphasise the difference between quantum and classical
computing. The point of this common objection is not, of
course, about criticising the assumption that the control
system which drives the evolution of the quantum device
does not behave according to classical mechanics. Rather,
it could be originated by the guess that regarding a part
of the quantum resources as program and another one as
data, a sort of quantum von Neumann machine, could lead
more naturally to quantum algorithms. This guess has
however been disproved by Chuang and Nielsen [12], who
showed4 that, if the program is to be executed determin-
istically, nothing can be gained by specifying it through

3 Quantum registers in QCL are however dealt with in a non
uniform fashion: in addition to qureg, two other register types
are present, the quvoid and the quscratch, which, for a proper
type checking, require the knowledge of the quantum device
state.

4 The authors of [12] showed that a programmable quan-
tum gate array, i.e. a quantum machine with a fixed evolu-
tion G which deterministically implements the transformation
| d 〉 ⊗ |PU 〉 → U | d 〉 ⊗ |P ′

U 〉, is such that if U1 and U2 are
distinct unitary evolutions up to global phase changes, then
|PU1 〉 and |PU2 〉 are orthogonal. |PU 〉 here plays the role of
the “program” and determines which operation U is to be ex-
ecuted on the “data” register prepared in the state | d 〉. The

a quantum state instead of through a classical one. These
considerations can be summarised by saying that quantum
algorithms are specified inherently by means of classical
programming.

Subject of this article is the investigation and specifica-
tion of the desirable features of a quantum programming
language. The following list is a summary of the main
points:

completeness: the language must be powerful enough to
express the quantum circuit model. This means that
it must be possible to code every valid quantum algo-
rithm and, conversely, every piece of code must corre-
spond to a valid quantum algorithm;

classical extension: the language must include (i.e. be
an extension of) a high level classical computing
paradigm in order to integrate quantum computing and
classical pre- and post-processing with the smallest ef-
fort. Ad hoc languages, with a limited implementation
of classical primitives and facilities, would inevitably
fall behind whenever “standard” programming tech-
nologies improve;

separability: the language must keep classical program-
ming and quantum programming separated, in order
to be able to move to a classical machine all those com-
putations which do not need, or which do not enjoy any
speedup in being executed on, a quantum device;

expressivity: the language must provide a set of high
level constructs which make the process of coding
quantum algorithms closer to the programmer’s way
of thinking and to the pseudo-code modular notation
of current research articles. The language must allow
an automated scalable procedure for translating and
optionally optimising the high level code down to a
sequence of low level control instructions for quantum
machines;

hardware independence: the language must be inde-
pendent from the actual hardware implementation of
the quantum device which is going to be exploited.
This allows “recompilation” of the code for different
quantum architectures without the programmer’s in-
tervention.

The next sections are organised along the following
lines. After a general introduction about the computa-
tional model (Sect. 2.1), the guidelines for the envisioned
language (Sect. 2.2) are presented, together with a discus-
sion on hardware requirements (Sect. 2.3). Section 3 then
describes the syntax for high level constructs (Sects. 3.1
and 3.2) as well as the low level, but still hardware inde-
pendent, primitives to which these constructs get reduced
(Sect. 3.3). Section 4 shows some code samples to clarify
the language layout. Section 5 discusses with more details
some of the choices for the operator syntax (Sect. 5.1)
and the open problem of the implementation of opera-
tors for classical functions (Sect. 5.2). Appendixes (A.1,
A.2, A.3) present possible approaches for implementing
the high level primitives previously described.

orthogonality of program states means that the program spec-
ification is indeed a classical specification.

S. Bettelli et al.: Toward an architecture for quantum programming 183

Quantum
resources

(local or shared)

Classical
hardware and

software

Code for elementary
quantum operations

Results of
mesurements

Master Slave

Logical representation
of quantum resources

Physical implementation
of quantum resources

Fig. 1. Simplified scheme of a QRAM machine. The classical hardware drives the quantum resources in a master-slave config-
uration; it also performs pre-processing and post-processing of quantum data. The only feedback from the quantum subsystem
is the result of measurements.

2.1 The QRAM model

Before describing the structure of the proposed quantum
language, the quantum computer architecture which it
is based on must be clarified. Quantum algorithms are
currently described by (more or less implicitly) resort-
ing to the QRAM model (see e.g. Knill [7], Knill and
Nielsen [13]).

A QRAM machine is an extension of a classical ran-
dom access machine which can exploit quantum resources
and which is capable of all kinds of purely classical com-
putations. This classical machine plays two roles: it both
performs pre-processing and post-processing of data for
the quantum algorithms (trying to keep the quantum pro-
cessing part as limited in time as possible in order to help
preventing decoherence), and controls the quantum sub-
system by “setting” the Hamiltonian which generates the
required unitary evolution, performing initialisations and
collecting the results of measurements. In this scheme the
quantum subsystem plays a slave role, while the master
classical machine uses it as a black-box co-processing unit.
This is summarised in the diagram in Figure 1.

It must be noted that quantum resources are not
necessarily local5; they can be shared among different
QRAM machines for quantum type communication or
quantum distributed computing. This can be handled by
the QRAM model if the machine is given access to the
hetero-controlled subsystem and to a classical synchro-
nisation system (a quantum network interface), but this
article will not delve into the details of these situations
further.

The quantum resource, independently from its actual
hardware implementation, is treated as a collection of
identical elementary units termed qubits; a qubit is an
abstract quantum system whose state space is the set
of the normalised vectors of the two dimensional Hilbert
space C 2, and can encode as much information as a point

5 Knill [7] notes that situations arising in quantum com-
munication schemes “require operating on quantum registers
in states prepared by another source (for example a quan-
tum channel, or a quantum transmission overheard by an
eavesdropper)”. It is likely however that these communication
schemes will require quite different hardware, so that one would
end up with two quantum subsystems better than with one but
more complicated.

on the surface of a unit sphere (the Bloch sphere). Due to
the structure of the quantum state space, a qubit can en-
code a superposition of the two boolean digits and is thus
more powerful than a classical bit, though the state can
not be read out directly. A collection of identical qubits
is not subject to the fermion or boson statistics, since the
state space of the qubits is in general only a portion of the
state space of the quantum system carrying the qubits, to
which the statistics applies.

2.2 A scheme for a quantum programming language

As already said, in order to perform a quantum computa-
tion, the classical core of the QRAM machine must modify
the state of the elements of the quantum subsystem it con-
trols. In the proposed language these elements are indexed
by addresses. Though in the following these addresses are
treated like unsigned integer numbers, thus abstracting
the underlying quantum device to a linear structure, it
is by no means assumed that quantum memory is physi-
cally organised as an array6. The goal of the addresses for
quantum elements is simply to hide to the programmer
the details of the memory handling.

It is well-known that the no-cloning theorem excludes
the possibility of replicating the state of a generic quan-
tum system7. Since the call-by-value paradigm is based
on the copy primitive, this means that quantum program-
ming can not use call-by-value; therefore a mechanism for
addressing parts of already allocated quantum data must
be supplied by the language.

In view of these considerations, a new basic data type,
the quantum register, is introduced in the proposed quan-
tum computing language. Quantum register objects are
arbitrary collections of distinct qubit addresses. Arbitrary
means both that the size is bounded only by the amount of
available quantum resources and that the addresses need
not be contiguous. Moreover, different quantum registers

6 It was so in very early schemes, like the seminal linear
ion trap by Cirac and Zoller [14], but many recent proposals
with a concern to scalability are geared toward an at least two
dimensional implementation.

7 In other words, the transformation |φ 〉| 0 〉 → |φ 〉|φ 〉,
where | 0 〉 is some fixed state and |φ 〉 is variable, is prohibited
in quantum mechanics, because it is not linear.

184 The European Physical Journal D

r
e
g
i
s
t
e
r
s

m
e
m
o
r
y

B

DC

A

E1 E2

1 3 1 3 2 02 13
0 11 12 17 18 35 36 4142 47 48 65 66 83 84 89 90 addresses

usage counts

Fig. 2. Examples of the organisation of quantum memory within registers. Each register is basically an ordered list of addresses
with arbitrary size, like A = [0, 35]; registers may overlap, like B and D which both reference the [48, 65] memory segment, or
be “inverted”, like C = [41, 12]. They can also be “disjoint”, like E = ([41, 18], [48, 89]). The usage status of each qubit in the
quantum memory array is maintained by the address manager, which is introduced in Appendix A.1. The qubits with addresses
from 90 on, in this example, are “free”.

may overlap, so that the same address can be contained
in more than one collection; an example of a set of over-
lapping registers is shown in Figure 2. A qubit is “free”
if its address is not referenced by any existing quantum
register.

The second data type which is proposed for the quan-
tum language is the quantum operator. A quantum oper-
ator object encodes the definition of a generic quantum
circuit (an acyclic network of quantum gates) and, when
fed with a quantum register, it is able to execute the circuit
on the supplied register. The operators are the interface
which is presented to the programmer for handling uni-
tary transformations. The action of a quantum operator
object onto a quantum register object produces, transpar-
ently to the programmer, a stream of byte-code (a sequence
of quantum gate codes and the addresses upon which they
must be executed) to be fed into the interface to the quan-
tum device.

Since a quantum operator object embeds the defini-
tion of the corresponding circuit as a datum, it is pos-
sible to automatically manipulate this definition in a
number of different ways, for instance for creating the
composition of a pair of circuits, building derived oper-
ators (like controlled or adjoint ones) and running simpli-
fication routines.

A more detailed description of the proposed scheme is
given in Appendix A.1.

2.3 Assumptions on quantum hardware

The actual construction of a quantum computer is a
tremendous challenge for both experimental and theoret-
ical researchers in the field. At the moment, it is simply
unknown what kind of quantum mechanical system is the
most useful for this task. As a result, it is also unknown
what kind of low level architecture is the most suitable for
the implementation of a quantum computer. This is an
additional reason, beyond general considerations on the
design of high level programming languages, in favour of
not referencing a specific physical system that is supposed
to support the language design.

The real computational complexity of a quantum algo-
rithm however depends on which capabilities the quantum
hardware is endowed with. Though the programming lan-
guage must be as general as possible, hence adaptable to
a variety of quantum devices, some minimal assumptions
on the QRAM machine have been made in this paper.

The first assumption concerns the hardware implemen-
tation of primitive quantum gates. It seems very plau-
sible that single-qubit gates as well as two-qubit gates
between neighbouring quantum subsystems can be exe-
cuted in constant time, independently of the physical lo-
cation of the involved qubit(s); two-qubit gates between
non-neighbouring locations on the other hand are more
challenging. In most of the currently proposed schemes
these gates can be implemented only locally, and physical
qubit swapping is needed in order to fulfill this condition;
this means that the execution time of a two-qubit gate
scales linearly with the “distance” (the number of required
swaps) between the qubit locations.

Since the physical layout of a quantum device remains
unknown to a high level programming language, it is not
possible to specify in the language any closeness relation,
and the hardware independent language environment can
not help but assume that two-qubit gates get executed
in constant time, and optimise its behaviour with respect
to this assumption. This means, in practice, that the real
“complexity” of any specified circuit is in general imple-
mentation dependent, and worse than that presented by
the language.

The second assumption concerns the implementation
of parallelisable gates. A set of applied gates is parallelis-
able if every qubit in the quantum device is non trivially
affected by at most one gate. A parallel quantum machine
device is such if it is able to execute a parallelisable set of
gates in a time bounded by the execution time of the most
expensive gate. This capability is also required in order to
perform fault tolerant quantum computation8. The lan-
guage assumes that the underlying quantum hardware is
parallel; indeed, only the parallelisation of homogeneous
gates (see page 186) is actually exploited.

8 See the discussion in [1], Section 10.6.4 in page 493 about
the threshold theorem for quantum computation.

S. Bettelli et al.: Toward an architecture for quantum programming 185

3 Language primitives

In this section the set of primitives for the proposed language is introduced. The first part concerns the high level
primitives (HLP) for the construction and manipulation of quantum registers (Sect. 3.1) and quantum operators
(Sect. 3.2). Registers and operators are classical data structures; their handling does not require any interaction
with the quantum device, exception made for the application of an operator to a register, and the initialisation or
measurement of a register.

The second part (Sect. 3.3) introduces a set of low level primitives (LLP) to which the high level specification of
a quantum program gets reduced, transparently to the programmer. The LLP are the actual “code” which is sent to
the generic quantum device.

3.1 Register handling

As explained in the introductory section, a consequence of the basic rules of quantum mechanics is that an unknown
generic state of a quantum register can not be inquired without being destroyed. Since such state encodes the inter-
mediate steps of the computation, it must de facto be regarded as unknown; hence quantum registers can not be read
while the computation is running on them. The main implication is that the programmer must think of a quantum
register (Qreg) as an interface to a portion of the quantum device, not as an object carrying a value, unless, of course,
he decides to measure it. The register is equivalent to a list of distinct9 addresses in the quantum memory, and the
language provides a set of compliant operations on such lists, which are specified in the following. While all addresses
in the same register are distinct, the impossibility to make copies of the register content requires the ability to have
more than one register reference the same addresses.

The initialisation and measurement primitives for registers are described in Section 3.3, since they are not distinct
from the corresponding LLP. All those primitives which are listed here do not involve any interaction with the quantum
device.

1 Register allocation

Register allocation is the action of creating a quantum register which references only free qubit locations (i.e. not
already referenced by an existing register). Quantum registers can be created with arbitrary size, limited only by
the capacity of the quantum device, the smallest register interfacing to a single qubit. It is possible to inquire
the size of a register. More details on how the allocation status of qubit locations can be handled are given in
Appendix A.1.

� Qreg a register(5); allocates a register with 5 qubits,
� int the size = a register.size(); inquires the size of the register.

2 Register addressing and concatenation

As already explained, the programmer must be able to operate on registers which overlap parts of already existing
ones. Therefore the register objects support the addressing operation (the creation of a register from a subsection
of an old register) and the concatenation operation (the creation of a register from the juxtaposition10 of two old
registers). A proper combination of these two operations allows for the creation of a register which is the most
general reorganisation of the used portion of the quantum device.

� Qreg a qubit = a register[3]; selects the fourth qubit from a register,
� Qreg a subreg = a register(2,5); selects 5 qubits starting at the third one,
� Qreg new reg = a subreg & a qubit; concatenates the two registers.

3 Register resizing

Once a register object has been created, it can be resized (extended or reduced) by adding new qubits or dropping
some of them at its beginning. This ability is very useful for routines which need to spawn and reabsorb auxiliary
qubits during their execution, provided they take care of a proper uncomputation. Extending a register works like
spawning a new register with the required additional size, concatenating it with the old register and renaming
the latter. Dropping qubits works like the deallocation of only a part of it, taking care that the reduced register

9 Distinctness is required because multi-qubits operations need distinct physical locations; by assuming that all registers
contain by construction only distinct addresses, checking this condition when a register is fed into a quantum operation object
can be avoided.
10 Concatenation requires more bookkeeping than simple addressing, because it must be checked that all the addresses in the
composed register are distinct.

186 The European Physical Journal D

contains at least one address.

� my register += 5; adds five qubits to my register,
� my register -= 3; drops three qubits from my register.

4 Register deallocation

Register deallocation is the act of destroying the classical object which represents the interface to a portion of the
quantum device. Before being eliminated, this object must release the allocated resources. As a consequence, the
“usage” of a part of the quantum device can drop to zero, which means that that part is free for a new allocation.

3.2 Quantum operators and their manipulation

Quantum operator objects (Qop) are the counterpart in the proposed language of quantum circuits, that is unitary
transformations on the finite dimensional Hilbert space of a register (U(2n) if n is the register size). The action of
quantum operators is to modify the state of a part of the quantum device, interfaced by a register.

As it is well-known11, all such unitary transformations can be built by finite composition using only matrices acting
non-trivially on a one- or two-level subsystem of the original Hilbert space; their number is in general exponential
in n. Furthermore, it is possible to approximate12 each of these matrices using a finite gate subset13 containing some
single-qubit operations and one two-qubit operation (see Sect. 3.3).

The decomposition into these LLP has exponential complexity in general, but this is not the case, of course, for
efficient quantum algorithms, which have both time (circuit depth) and space (register size) requirements which are
polynomial in the input size; on the other hand, representing a transformation by its matrix elements without any
compression scheme is always exponential in the input size. An efficient scheme for quantum operators should therefore
be (de)composition oriented, i.e. an operator should be stored as the sequence of its factors.

The following list describes the HLP which can be used by the programmer in order to specify a quantum operator.
The construction of a quantum operator is a purely classical computation, it does not need to reference quantum
registers and must use a polynomial amount of classical resources (space for storage and time for calculations) in order
to be useful.
1 Identity operator

A quantum operator object can be constructed without any parameter; in this case it corresponds to the identity
operator over a quantum register with arbitrary size. It can then be extended using operator composition, see
point 7.

� Qop my op; constructs the identity operator.

2 Fixed arity quantum operators.

Each primitive fixed arity quantum operator is associated to a matrix M acting on k qubit lines, i.e. a matrix
in U(2k), and is specified by k index lists {� (h)}h∈[0,k[(all the lists have the same size s, and all the indexes are
distinct even among different lists). The action of such an operator onto a register is to apply M to the qubits in
the register indexed by �

(0)
j , . . . , �

(k−1)
j for each j ∈ [0, s[. In simpler words, a single primitive fixed arity quantum

operator represents a circuit with s copies14 of the matrix M in parallel.
The order of indexes inside a list is only relevant with respect to the order of indexes in the first

list (hence the order of the single list of a single-qubit primitive is arbitrary). An example of how these
lists are used is shown in the picture on the right: the circuit corresponds to the creation of a CNOT
operator with control index list � (0)=(0, 4, 5) and target index list � (1)=(1, 2, 6). The symbol used for a
CNOT gate is .

A summary of primitive quantum operators can be found in Table 3. 6

5

4

3

2

1

0

� Qop my op = QHadamard(7); Hadamard gates acting on first 7 qubits,
� Qop my op = QCnot(ctrls, targets); see above (ctrls = � (0), targets = � (1)).

11 See [1], Sections 4.5.1 and 4.5.2 in page 189.
12 The approximation of a single-qubit gate is very efficient: the Solovay-Kitaev theorem proves that an arbitrary single-qubit
gate may be approximated to accuracy ε using O(logc(1/ε)) gates from a discrete set, where c ∼ 2. The approximation of two-
qubit gates can be efficiently reduced to previous case if a non trivial two-qubit gate is available as a primitive. The problem
of approximating a generic transformation is however very hard: there are unitary transformations on m qubits which take
Ω(2m log(1/ε)/ log(m)) operations from a discrete set to approximate. See [1], Sections 4.5.3 and 4.5.4 in page 194.
13 See [1], Section 4.5.3 in page 194.
14 Such a way of representing quantum operations reduces the amount of classical resources needed to store the quantum
circuit and becomes very useful when the quantum device is able to run a number of independent copies of a quantum gate in
parallel.

S. Bettelli et al.: Toward an architecture for quantum programming 187

3 Macro quantum operators

The primitive quantum operators previously described correspond to fixed arity quantum gates applied in a parallel
fashion. It is useful to consider also a different type of high level primitive (a macro from now on) which is associated
to a single transformation in U(2n) homogeneously parametrised with respect to the number n of qubit lines.
A macro with a given dimension n can not in general be reduced to a tensor product of macros of the same type
with a smaller dimension. A macro is defined by a single list of addresses, whose order is meaningful (differently
from fixed arity quantum operators with arity equal to one).

Quantum macros could become very handy if a specific quantum hardware is built which is able to implement
the macro more efficiently than by running the corresponding sequence of less specific low level primitives. In
general however their constructor expands the macro into an equivalent sequence of fixed arity operators.

� Qop my op = QFourier(7); Fourier transform on the first 7 qubits.

4 Qubit line reordering

Some quantum operations15 require a permutation of the qubits inside the register they operate on, for instance
in order to preserve a standard convention for the most or least significant location. This can be accomplished by
properly exchanging the quantum states of the qubits referenced by the register. The language provides a fixed
arity primitive (with arity equal to two) which performs such exchanges.

Running this swap operation on the quantum device is however a waste of computation time since it is a
completely classical data manipulation. Appendix A.3 describes a possible approach for an implementation which,
transparently to the programmer, reorganises (on the classical machine) the mapping between qubit addresses and
qubit locations, achieving the same result.

� Qop a swap = QSwap(5); implements the swap of the first 5 qubits.

5 Controlled operators

A controlled-U operator is a quantum operator CU which implements the transformation CU |x 〉| y 〉 =
|x 〉U δx,1...1 | y 〉, that is it applies U to the second register when the first is found in the state | 1 . . . 1 〉. It is a
very useful high level primitive for quantum algorithms. This operator is of course unitary and its adjoint is the
CU† operator. Quantum operators have a constructor for such controlled objects, taking as input the operator
to be controlled and the size of the control register. They need, in general, to use ancilla qubits during their
execution, which are to be supplied by the language internals transparently to the user. Some techniques for the
implementation of controlled operators are discussed in Appendix A.2.

� Qop a controlled op(U, 5); creates a U conditioned by 5 qubits.

6 Operators for classical functions

Given an algorithm for a classical function f : Z2n → Z2m , it is often of interest in quantum computation the
mapping Uf |x 〉| y 〉 = |x 〉| y⊕f(x) 〉 where ⊕ is the bitwise XOR, the two registers having respectively size n and m.
These operators, which implement a classical function in a reversible fashion, are always self-adjoint16, generally
create entanglement between the input and output registers and are necessary to insert non-injective classical
functions in the quantum computing scheme17.

A quantum language needs the ability to build the Uf operator automatically once the programmer has specified
an algorithm for f using the formalism of the underlying classical language. If f is boolean (that is m = 1), an
easy construction with an additional ancilla qubit can implement the “phase” mapping Pf |x 〉 = (−1)f(x)|x 〉. For
a longer discussion about the problems this facility rises refer to Section 5.2.

� Qop an oracle = Qop(f,3,5); oracle for f with n = 3 and m = 5,
� Qop a phase oracle = Qop(g,4); phase oracle for g with n = 4 (m is 1).

7 Operator composition

Composing two quantum operator objects returns an operator which represents the concatenation of the underlying
circuits in the specified order (i.e. the first operator gets executed first, similarly to how circuits are drawn and
differently from the mathematical notation, where operators act on the right). A more elaborated analysis of the
advantages of a composition oriented representation can be found in Section 5.1.

15 The best known example is the quantum Fourier transform, see [15], where the least significant qubits of the input are
transformed into the most significant qubits of the output and vice versa.
16 Since U2

f |x 〉| y 〉 = Uf |x 〉| y ⊕ f(x) 〉 = | x 〉| y ⊕ f(x) ⊕ f(x) 〉 = |x 〉| y 〉.
17 Implementation of classical functions is for instance needed in the Grover’s algorithms [17], where they are used to evaluate
the fitness of a candidate solution to an NP problem.

188 The European Physical Journal D

6

5

4

3

2

1

U

W

V

6

5

4

3

2

1

U

W

V

I
⊗3










head






jump

6

3

4

5

2

1

U

W

V




head






size

Fig. 3. This figure illustrates the two kinds of index permutations for quantum operators. Left: a generic quantum circuit with
various types of quantum gates. Centre: the same circuit after a split(head, jump) operation with head set to 2 and jump set to
3; the first head qubit lines are left untouched, while the others are shifted down by jump lines. Right: the same circuit after an
invert(head, size) operation with head set to 2 and size set to 3; the first head qubit lines are left untouched, the following size
lines are inverted and all the remaining circuit is unmodified.

The language provides three different versions of the composition of operators, in order to achieve increasing
efficiency by reusing existing data structures: concatenation leaves the two argument operators untouched and
returns a third object, augmentation modifies the first argument to hold the composed operator without modifying
the second argument and splicing moves all the data from the second operator (which is left the identity) into the
first.

� Qop composed = part 1 & part 2; composes two Qops into a third Qop,
� my operator &= an operator; extends my operator with an operator,
� my operator << an operator; moves an operator into my operator.

8 Operator conjugation

Given a quantum operator U , it is possible to specify its adjoint U † with the conjugation transformation. Conju-
gation may act on the quantum operator object in place or create a new Qop. The proposed quantum language
supplies both the mutating and the non mutating transformations.

� Qop adj operator = !an op; creates the adjoint operator,
� an op.adjoin(); conjugates the operator.

9 Operator permutations

Quantum operators need a method for rearranging the order of the indexes of qubit lines for the underlying circuits,
so that simpler operators can be adapted to fit as modules into more complex ones; an example of this is described
in Section 4.1 where two copies of a circuit for performing the addition of two input registers are rearranged to
build a circuit for the addition of three input registers.

A generic permutation can be decomposed into a sequence of adjacent transpositions, but this approach would
be highly inefficient in most situations; it is better to have access to “higher level” permutations which can modify
the index lists in a single step. The proposed language supplies the split and invert permutations, both in their
mutating and non mutating version. A split permutation leaves the first part of the circuit unaltered while “shifting
down” the rest of it; an invert permutation instead “reverses” the central part of a circuit. Shifting the whole circuit
(offset) is a sub-case of the split operation. A better understanding of these two manipulators can be gained visually
with Figure 3.

� Qop split = an op(2,3,SPLIT); creates a split operator,
� Qop inverted = an op(2,3,INVERT); creates an inverted operator,
� Qop shifted = an op >> 2; creates an offset operator,
� an op.offset(2).invert(2,3).split(2,3); offsets, inverts and splits the operator.

10 Application of an operator

Quantum operators must have a method for running the circuit they embed onto a quantum register supplied
by the programmer. Executing an operator means executing all of its factors in sequence: the index lists in each
primitive operator must be coupled with the address lists in the given quantum register in order to calculate the

S. Bettelli et al.: Toward an architecture for quantum programming 189

qubits to be addressed, and the appropriate byte-code must be sent to the quantum device18. This process may
require ancilla qubits, which need to be spawned and reabsorbed transparently to the user. See Appendix A.3 for
more details on the steps taken when an operator is executed.

� an operator(a register); runs the circuit onto the register.

3.3 Low level primitives

Low level primitives are the basic building blocks for the communication between the language and the quantum
device. They are divided in non unitary (initialisation and measurement) and unitary (quantum gates). Quantum
gates are used to build up all quantum circuits and must of course form a complete set (redundancy is not a problem);
choosing a universal set of gates together with a proper syntax for them (see the previous section and Sect. 5.1) ensures
that all and only quantum circuits in the QRAM model can be expressed by the proposed quantum language.

Initialisations and measurements, which are not unitary, are operated directly onto quantum registers. Since reg-
isters can have arbitrary sizes, the assigned or returned values do not in general fit into a standard integer type of the
classical language, therefore a new type for ordered sets of bits should be introduced (Qbitset in the following), with
automatic conversion to/from unsigned integers when possible.

As remarked in Section 3.2, an efficient scheme for quantum operators should store quantum circuits using one
of their factorisations. The smallest factors are called in the following time slices. In the proposed language, in a
way similar to primitive quantum operators, each time slice is not simply a quantum gate, but embeds a sort of
parallelisation restricted to homogeneous gates, which can be acted in parallel over multiple independent qubits. The
quantum programmer does not however deal directly with time slices, but he uses only the set of high level primitives
described in the previous section.

Storing quantum primitives as a list of time slices fits nicely with the previous requirements for quantum operators,
e.g. conjugation is easily achieved by iterating through the list in the reverse order and conjugating all its elements19;
splicing (the third version of operator composition) requires constant time.

1 Register initialisation and assignment

The most obvious primitive for a quantum register is its initialisation to an element of the computational basis.
On a realistic quantum device this involves setting all the qubits of the register to some reference state (e.g. the
ground state) and subsequently performing the required unitary transformation to turn it to the representation of
an arbitrary integer. It is evident that assignment of a Qbitset to a quantum register is the same operation as
before, and involves a re-preparation of qubits of the register.

� Qreg a register(5,3); initialises a 5 qubits register to | 3 〉,
� a register = 7; prepares the register again in | 7 〉.

2 Register measurement

The programmer must be able to measure a register obtaining an element of the computational basis (that is an
integer number or a sequence of boolean values) to be used in the following of the algorithm. This operation is
the only blocking primitive with respect to the code flow in the classical core, because the classical environment
must wait for the quantum device to execute all the generated byte-code, perform the measurement and return
the result.

� Qbitset val = a register.measure(); measures a register and saves the result,
� int val = a register.measure(); casts to integer if possible.

3 Low level unitary gates

As already said, it is not important which low level unitary gates are chosen to implement a version of the proposed
quantum language, as long as the set is complete: this ability to switch to another set must be retained, since it is
far from obvious which primitives will most easily be implemented and standardise in future quantum computers.

In this paper (see Tab. 3) the Welsh-Hadamard transform H , the enumerable set of phase shifts Rk (rotations
around the z-axis) and their controlled counterparts CRk

are used as a complete20 set of unitary LLP. Let φk be

18 If a quantum operator must be repeated on the same register a number of times, a mechanism could be provided for caching
the byte-code and resend it without recalculating all address pairings from the beginning each time.
19 All the quantum gates corresponding to time slices should have their adjoint gate implemented as a primitive, so that each
quantum operator and its adjoint have exactly the same circuit depth.
20 This set is redundantly universal; note that (I⊗H) ◦CR1 ◦ (I⊗H) is the CNOT gate, R2 is the “phase” gate and R3 is the
“π/8” gate. CNOT, “phase” and “π/8”, together with H are the so-called standard set of universal gates (see [1] in page 195).

190 The European Physical Journal D

Table 1. Quantum registers, the Qreg objects (see Sect. 3.1).

Prototype Ref.

The register class class Qreg; Sect. 3.1

Type for a qubit address Qreg::address Sect. 2.2

Type for a register size Qreg::size type Sect. 2.1

Type for a bit set Qbitset or unsigned integers p. 189

Register constructors Qreg::Qreg(size type s = 1, value v = 0); pp. 185, 189

Qreg::Qreg(const Qbitset &the bits); pp. 185, 189

Register assignment void Qreg::operator=(value v) const; p. 189

void Qreg::operator=(const Qbitset &the bits) const; p. 189

Measurement (blocking) Qbitset Qreg::measure(void) const; p. 189

Register copy constructor Qreg::Qreg(const Qreg &a register);

Register destructor Qreg::~Qreg(); p. 186

Qubit addressing Qreg Qreg::operator[](address a) const; p. 185

Qreg Qreg::operator()(address a, size type s) const; p. 185

Register concatenation Qreg operator&(const Qreg &r 1, const Qreg &r 2); p. 185

Qreg &Qreg::operator&=(const Qreg &second register); p. 185

Register resizing Qreg &Qreg::operator+=(size type the size); p. 185

Qreg &Qreg::operator-=(size type the size); p. 185

Register size Qreg::size type Qreg::size(void) const; p. 185

e2πi/2k

for k ∈ N and its conjugate e−2πi/2|k|
for k ∈ Z/N ; then the matrix representation of these LLP is as follows:

H =
1√
2

(
1 1
1 −1

)

H Rk =
(

1 0
0 φk

)

k CRk
=

(
I 0
0 Rk

)

k
.

Moreover, H is self-adjoint and Rk is the adjoint of R−k (CRk
is the adjoint of CR−k

), hence this set is closed
under conjugation. In Appendix A.2 it is shown that CU , where U is one of the previous gates, can be expanded
into a circuit of gates from the same set with depth bounded by a constant. Primitive quantum operations are
built using LLP, but they are logically distinct: there is no need for a one to one correspondence.

This decoupling allows more portable quantum code to be written, since the trans-
lation from HLPs into LLPs can be delegated to “more hardware-specific” libraries.
Expanding on a previous example, in the picture on the right it is shown the circuit
corresponding to the creation of a CNOT operator with control indexes (0, 4, 5) and
target indexes (1, 2, 6), reduced to LLP. The relevant identity is X = HR1H , where X
is the NOT port. 6

5

4

3

2

1

0

≡

H

H

H

1

1

1

H

H

H

4 Code fragments

A preliminary implementation of the ideas presented in the previous sections has been developed in the form of a
C++ [18] library by the authors and is freely available on the Internet. This section introduces the flavour of the
proposed high level language by showing some examples of source code. The code is of course not optimised in order
to be more understandable. The C++ like syntax is summarised in Tables 1, 2 and 3, but they are not strictly necessary
in order to follow the discussion.

4.1 A three-input adder

This example illustrates how operator compositions, permutations and adjoining can be used in the classical prepro-
cessing stage in order to build a complex parametric quantum operator by reusing smaller circuits.

The following circuit implements the core of the quantum Fourier transform [15] for a four-qubit register, where
|ϕ(α) 〉 stands for

(
| 0 〉 + e2πiα| 1 〉

)
/
√

2. The circuit is different from that usually reported on quantum computing

S. Bettelli et al.: Toward an architecture for quantum programming 191

Table 2. Quantum operators, the Qop objects (see Sect. 3.2).

Prototype Ref.

The operator class class Qop; Sect. 3.2

Default constructor Qop::Qop(); p. 186

Copy constructor Qop::Qop(const Qop &op);

Controlled operators Qop::Qop(const Qop &op, size type ctrl); p. 187

Oracle operators Qop::Qop(int(*f)(int), size type in, size type out); Sect. 5.2

Phase oracle operators Qop::Qop(bool(*f)(int), size type in); Sect. 5.2

Operator composition Qop operator&(const Qop &op 1, const Qop &op 2); p. 187

Qop &Qop::operator&=(const Qop &op); p. 187

Qop &Qop::operator<<(Qop &op); p. 187

Operator conjugation, mutable Qop &Qop::adjoin(void); p. 188

Operator conjugation, const Qop Qop::operator!(void) const; p. 188

Operator split, mutable Qop &Qop::split(size type head, size type jump); p. 188

Operator invert, mutable Qop &Qop::invert(size type head, size type size); p. 188

Operator split/invert, const Qop Qop::operator()(size type,size type,op type) const; p. 188

Operator offset, mutable Qop &Qop::offset(size type jump); p. 188

Operator offset, const Qop Qop::operator>>(size type jump) const; p. 188

Operator application void Qop::operator()(const Qreg &a register) const; p. 188

Table 3. Computational primitives (see Sects. 3.2 and 3.3).

Prototype Ref.

Hadamard mixing class QHadamard; p. 189, H

Phase shift (Z-rotation) class QPhase; p. 189, Rk

Conditional phase shift class QCondPhase; p. 189, CRk

Controlled NOT class QCnot; p. 198

Toffoli gate class QToffoli; p. 198

Swap gate (classical) class QSwap; App. A.3

Discrete Fourier transform class QFourier; [15]

textbooks since the final rearrangement of qubit lines is not performed. For this reason the corresponding unitary oper-
ator is named F̃ . The effect of the transformation is to move information from the computational basis representation
into the phase coefficients.

|x3 〉
|x2 〉
|x1 〉
|x0 〉 H 2 3 4

H 2 3

H 2

H |ϕ(0.x3) 〉
|ϕ(0.x2x3) 〉
|ϕ(0.x1x2x3) 〉
|ϕ(0.x0x1x2x3) 〉

−−−−→ F̃

Following an idea of Draper [19], the accumulation of information into the phase coefficients can continue using
conditional phase shifts from a second register into the Fourier transformed one. The state of the first register after
this stage is the F̃ transformed state of |x + y 〉 (modulus 24). It is easy to see that all the phase shifts of the same
kind involve independent qubit lines, and can therefore be represented by a single time slice.

| y3 〉
| y2 〉
| y1 〉
| y0 〉

|ϕ(0.x3) 〉
|ϕ(0.x2x3) 〉
|ϕ(0.x1x2x3) 〉
|ϕ(0.x0x1x2x3) 〉 1

1

1

1

2

2

2

3

3

4

| y3 〉
| y2 〉
| y1 〉
| y0 〉

|ϕ(0.x3 + 0.y3) 〉
|ϕ(0.x2x3 + 0.y2y3) 〉
|ϕ(0.x1x2x3 + 0.y1y2y3) 〉
|ϕ(0.x0x1x2x3 + 0.y0y1y2y3) 〉 −−−−→ R

192 The European Physical Journal D

The obvious step now is to apply F̃† to F̃ |x + y 〉 in order to get the modular addition of x and y (see the left half
in the following picture). Once the adder circuit A is constructed, the process can be iterated in order to build a
three-input adder, by summing the content of a third register onto the register which holds the intermediate sum. The
right half in the following figure shows the resulting circuit, where A1 and A2 represent the A operator acting on the
first and third register.

| y 〉

|x 〉

F̃
R

F̃† |x+y 〉

|x 〉
−−−−→ A

| z 〉

| y 〉

|x 〉

A
A2

A1

|x+y+z 〉

| y 〉

|x 〉

The operator syntax of the proposed quantum language allows to write source code for the implementation of the three-
input adder which strictly follows the previous “high level” description. The desired circuit is built by the following
function with size= 4.

Qop build_three_adder(int size) {
Qop phase_shifts;
for (int i=0; i<size; ++i)
phase_shifts << QCondPhase(size-i, i+1).offset(i);

Qop transform = (QFourier(size) & QSwap(size)).offset(size);
Qop adder_2 = transform & phase_shifts & (! transform);
Qop adder_3 = (adder_2 >> size);
adder_3 << adder_2.split(size, size);
return adder_3;

}

The loop sets up the R circuit into the phase shifts operator, which is initialised to the identity, by pushing the
conditional phase shifts into it. The first argument to each QCondPhase is the number of gates to be stored and the
second is the power k of CRk

(see Sect. 3.3). Each QCondPhase is then offset to the correct position. The transform
operator contains the Fourier transform over the lower register (offset(size)) once the final qubit swap has been
reversed with a QSwap operator.

phase shifts is then combined with transform and its adjoint to form the two-input adder adder 2. The three-
input adder adder 3 is built by concatenating two permutations of adder 2; the first is offset by size qubit lines (thus
it acts on the second and third register) and the second is split with a hole in the middle (thus it acts on the first and
third registers). Note that the << operator at the end reuses the time slices in adder 2, which is therefore lost.

During the construction of transform any trivial simplification algorithm embedded in the language (see Sect. 5.1)
can simplify the double swapping of qubit lines at the end of the Fourier transform. The same algorithm can simplify
the F̃† at the end of the first two-input adder A with the F̃ at the beginning of the second adder (since they are
performed on the same register). The data which is stored inside the quantum operator object adder 3 is therefore
the following, where quantum gates which belong to the same time slice have been grouped together, reducing the
number of time slices to 28:

(11)

(10)

(9)

(8)

(7)

(6)

(5)

(4)

(3)

(2)

(1)

(0)

transform

H 2 3 4

H 2 3

H 2

H

phase shifts

1

1

1

1

2

2

2

3

3

4

phase shifts

1

1

1

1

2

2

2

3

3

4

transform (adjoint)

H

2
†

H

3
†

2
†

H

4
†

3
†

2
†

H

4.2 An example with phase estimation

This example is an implementation of the phase estimation algorithm as a subroutine of the randomised order finding
algorithm, in order to illustrate the use of constructors for controlled operators. The order finding algorithm computes

S. Bettelli et al.: Toward an architecture for quantum programming 193

the order21 r of x with respect to N , where x and N are two coprime integer variables with x < N . The phase estimation
subroutine is used to return a mantissa which approximates s/r where s is a random number in [0, . . . , r − 1]. The
result is to be passed through the continued fraction algorithm (which is completely classical) in order to extract r.
The interested reader can find further details in [2].

The phase estimation subroutine accepts two additional parameters, ε and n, where 1− ε is the probability bound
on having n exact digits in the decimal expansion of s/r. The corresponding circuit is the following, where M(q) is a
matrix22 which implements the multiplication by q modulo N , and Mj stands for M(x2j

)

eigen. register

phase register

| 1 〉 m qubits






| 0 〉 t qubits





H

M0

...
Mt-1





estimate of s

r

Qbitset run_order_finding(int x, int N, int n, float epsilon) {
int t = n + ceil(log(1+1/(2*epsilon))/log(2));
int m = ceil(log(N)/log(2));
int q = x;
Qop controlled_multiply[t];
for (int i=0; i<t; ++i, q = ((q*q) % N))

controlled_multiply[i] << Qop(generate_multiply(q, N), 1);
Qop mixer = QHadamard(t);
Qreg phase(t);
Qreg eigen(m, 1);
mixer(phase);
for (int i=0; i<t; i++)

controlled_multiply[i](phase[i] & eigen);
return phase.measure();

}

The first lines simply calculate the number t of qubits in the phase register and the size m of the eigenvector register
needed in order to host N. Then, for each power q ∈ {x1, · · · , x2t}, the helper function generate multiply builds the
M(q) operator. The returned object (which is a Qop) is immediately used as first argument of the controlled operator
constructor in order to build a one-qubit controlled M(q) for later use (this last operator acts on m+1 sized registers).

Everything up to now is classical preprocessing, the interaction with the quantum device starts with the creation and
initialisation of the phase and eigenvector registers, followed by the application of the tensor product of t Hadamard
gates (mixer) to the phase register, transforming its state into the uniform superposition of all computational basis
states.

Inside the main loop the controlled multiplications are then executed by passing the control qubit and the target
register together (using the register concatenation operator). The last line measures the phase register and returns the
phase estimate as a bit set.

4.3 An example with Grover’s algorithm

This example is the well-known Grover’s algorithm [17] which finds one or more elements in an unstructured input
space with an exponential speed-up with respect to the classical case. It is meant to illustrate the usefulness of having a
HLP for the automatic construction of oracle operators from functions specified with the underlying classical language.
The premise is that an efficient algorithm is known for the computation of the classical oracle function f . The following
example is the simplified version in which there is exactly one good input marked by the oracle, that is f(x) = true if
and only if x is the searched element x̃. The range of inputs is [0, . . . , N − 1] where N = 2n. The corresponding circuit

21 For positive integers x and N , with no common factors, the order of x modulo N is defined to be the least positive integer
r such that xr mod N = 1.
22 The definition of M(q) is the following: M(q)| i 〉 = | iq mod N 〉 if i < N , the identity otherwise. If q and N are coprime the
corresponding transformation is indeed invertible hence M(q) is unitary. There are various strategies for the implementation
of M(q); the simplest one uses classical preprocessing, controlled summations and ancilla qubits. It would make the example too
complicated to show the actual construction of M(q), which is however detailed by many authors. See for instance Shor [16].

194 The European Physical Journal D

is the following, where O is the phase oracle operator, M is the so-called “inversion about mean” and G = OM is the
Grover iteration:

| 0 〉 H
√

N times

G
}

x̃ with high probability

Qbitset run_Grover(bool(*f)(int), int n) {
int repetitions = sqrt(pow(2.0,n));
Qop phase_oracle(f,n);
Qop invert_zero(f_0,n);
Qop mixer = QHadamard(n);
Qop invert_mean = mixer & invert_zero & mixer;
Qop grover_step = phase_oracle & invert_mean;
Qreg input(n);
mixer(input);
for (int i=0; i<repetitions; ++i) grover_step(input);
return input.measure();

}

At the beginning the number of iterations to be performed is calculated. It is well-known that this number scales
as O(

√
N) [17]. Then the phase oracle and invert zero operators are built (f 0 is a function which returns true

only when the input is 0). This construction relies on automatic translation from the corresponding classical function
provided by the language. This is a major difficulty in the language implementation and is discussed in Section 5.2.

Once the previous two operators are ready, it is a matter of composition to build up the invert mean (inversion
about mean) and the Grover step. Note that up to now everything is classical preprocessing. The quantum part of
the routine starts when an input register is created with the appropriate size for holding the input range; then this
register is subject to a Hadamard gate on each qubit line in order to generate the uniform superposition of all possible
inputs. When the input is ready, the Grover step is applied repetitions times, the iteration counter being classical.
The algorithm is terminated by a register measurement which returns x̃ with high probability.

5 Language internals

5.1 Operator composition and simplification

This section analyses with more details the benefits gained by using quantum operator objects instead of functions
for representing quantum circuits; the function-like approach, basically, is adopted both in the QCL [10,11] and in the
qGCL [8] languages.

A simple example can stress the difference between the two solutions: a Hadamard 2()
function is available, which accepts a quantum register and an index i inside the register
as arguments. It applies two Hadamard gates, to the ith and to the (i + 1)th elements of
the register, and is invoked with i assuming all the possible values for a valid index in the
register:

H

H H

H H

H H

H H

H

=⇒

H

H

Qreg myreg(size);
for (int i=0; i<(size-1); i++) Hadamard_2(myreg, i);

The insert on the right shows the corresponding circuit (for size=6) and its obvious simplification. It is clear that the
quantum language should perform this optimisation, transparently to the user. With a function-like syntax however
the quantum code is generated independently by each function call and the optimisation can be done only if the code
is buffered and simplified before being sent to the quantum device. Moreover, if the whole loop is repeated with a
different register, the buffering and the simplification have to be redone, even though the optimisation depends only
on the circuit structure and not on the actual register.

What is really needed is a mechanism for generating the whole circuital description before the quantum device is
even fired up, applying algebraic simplifications once and for all. This is possible if quantum operators are implemented
as data structures modifiable at run time, which can be manipulated, composed and simplified before allocating the

S. Bettelli et al.: Toward an architecture for quantum programming 195

quantum registers. The simplification routines which perform optimisations can be embedded23 inside the composition
primitives. In the proposed language the previous example is coded as:

Qop circuit;
for (int i=0; i<(size-1); i++) circuit << QHadamard(2).offset(i);
Qreg myreg(size);
circuit(myreg);

5.2 The implementation of classical functions

A requirement for a useful quantum language is the ability to implement pseudo-classical operators, that is transfor-
mations like Uf : |x 〉| y 〉 → |x 〉| y ⊕ f(x) 〉 where f : Z2n → Z2m is a classical function and n and m are the sizes of
the registers. In Section 3.2 it was suggested the introduction of an HLP for the automatic construction of quantum
operators from the classical specification of an algorithm for f ; this section discusses the problem more extensively.

Lecerf [20] and Bennett [21] have shown that any classical, potentially irreversible, algorithm can be efficiently
converted into a reversible one. Since reversible classical algorithms can be converted into equivalent quantum operators
efficiently, this means that each classical algorithm computing a function f can be efficiently converted into a quantum
operator Uf . A constructive approach to this problem has been shown by Zuliani [9].

What is to be remarked immediately is that if f is “known” through a classical black-box it is useless as far as
quantum computing is concerned. The reason for this is that getting the action of f through a black-box requires as
many queries as the size of the input space; hence, if the classical preprocessing stage tries to understand f through
a black-box, it experiences an exponential slowdown which nullifies any quantum gain. Therefore the constructor of
a pseudo-classical operator does not need the ability to call the function but the ability to inspect its algorithmic
definition.

A second remark is that “function” in the current context means a mathematical function, i.e. a deterministic
mapping of any input to an output. This definition is more restrictive than the usual meaning in a programming
language (a routine), because a routine may depend on the state of the classical machine24 and may be not terminating
on some inputs.

Summarising, the automatic generation of pseudo-classical quantum operators needs access to the specification of
the algorithm which implements the function. Moreover, either the algorithm is written in a restricted language which
allows only the coding of mathematical mappings, or a “filter” must be applied in order to check for the presence of
operations which depend on the state of the classical machine or which may cause the algorithm not to terminate.
The filtered algorithm must then be parsed and transformed into a finite size circuit. No scheme for this translation
has yet been developed for the proposed quantum language.

Conclusions

It has been proposed a language scheme and a set of high level primitives for programming a QRAM machine. The
high level primitives have been studied in order to fit with current circuit model descriptions of quantum algorithms.

The scheme provides an automatic translation and optimisation of high level primitives into low level primitives
which are sent to the quantum device. This generated code is still hardware independent, in order to make it easy
to switch from real quantum devices to quantum simulators and between different models of quantum hardware and
different schemes for low level hardware dependent primitive translation.

There is an ongoing effort25 to provide a working implementation of the ideas indicated in this paper through a
library using the C++ programming language. A procedure for the automatic translation of classical mappings (see
Sect. 5.2) is still to be studied.

Once this task is accomplished, it could be a valuable tool for a number of different purposes, like:

• testing the efficiency of different high level simplification and optimisation routines for quantum circuits, including
the implementation of pseudo-classical operators;

23 If some optimisation routines are too expensive for being embedded, it is possible to leave to the programmer the freedom
to force their call, e.g. circuit.simplify(...) where the arguments select the simplification strategy.
24 The dependence on the state of the classical machine can be through global or static variables, including random number
generators, as well as through run time conditions, like user input.
25 A detailed description of a preliminary language implementation can be found in: S. Bettelli, Ph.D. thesis, University of
Trento, in preparation (February 2002). The code will be made available at:
http://sra.itc.it/people/serafini/quantum-computing/qlang.html

196 The European Physical Journal D

Standard compiler

Source code

Standard
classical

code

Quantum
primitives

for
registers

Quantum
primitives

for
operators

Quantum
library

Classical
Machine

abstractions

Operator
objects

Register
objects Address

manager

Bytecode
generator

Measurement
collector

Execute on a
classical machine

Standard CPU
instructions

from the
non-quantum
core of the
language Instructions

for quantum
registers

Instructions
for quantum
operators

Unitary
operations

Initialisations
Measurements

Results

Quantum Machine
model dependence

Error
correction

tools

Software-hardware
primitives

translator and
optimiser

Quantum
device

controller

Quantum
device

Fig. 4. Overall scheme for a quantum device controlled by classical hardware, which details Figure 1. The three shaded boxes
are the resources available to the programmer for writing a “quantum program”. The big dashed boxes contain the source code
level, the classical machine control and the quantum machine architecture dependence. See Appendix A.1 for more details.

• testing the efficiency of different schemes for high level to low level and hardware independent to dependent
translation routines for quantum circuits;

• testing the efficiency of different hardware architectures for the execution of quantum code (with timing simula-
tions);

• having a high level interface for the specification of algorithms which are to be fed into quantum simulators;
• testing the robustness of error correction codes and fault tolerant quantum computation with respect to generic

error models, without modifying the simulation libraries;
• quantum programming (when quantum computers will be ready).

The authors wish to thank Bruno Caprile (ITC-IRST) for interesting discussions about the design and the aims of the pro-
gramming language. S.B. was a doctoral student at the University of Trento, also associated to INFN, during the preparation
of this work.

Appendix A: Implementation details

A.1 A detailed scheme for the language implementation

In Section 2.2, the quantum registers and the quantum operators were introduced. Their syntax was examined in
Sections 3.1 and 3.2. This appendix takes a closer look at these data types and at the language environment by
describing the scheme presented in Figure 4.

The specification of a “quantum program” starts with a source code text file, just like a plain program. The source
code syntax uses a standard programming language as a base, and adds primitives for creating and managing quantum
register objects and quantum operator objects. Additional routines (a “quantum library”) for common circuits may
be used. The code is compiled to an executable by a standard compiler for the base language.

At run-time this executable creates in the classical memory some data structures which correspond to the operator
and register objects, and manages their “interaction”. The data structures for quantum registers are basically lists
of distinct addresses. The implementation of non-unitary operations (initialisations and measurements) is achieved
directly through these interfaces.

S. Bettelli et al.: Toward an architecture for quantum programming 197

The “usage count” of each qubit (the number of registers which are referencing it) is kept by another data structure,
the address manager, which can not be directly manipulated by the programmer. The address manager knows which
qubits are “free” and provides lists of free addresses with the appropriate size when a new register is to be created. An
example of a set of overlapping quantum registers with the corresponding status of the address manager was shown
in Figure 2.

Quantum operator objects, when applied onto registers, calculate which gates are to be executed on which qubit
addresses and send this information to the byte-code generator, which provides an additional address translation in
order to perform qubit swaps without resorting to the quantum device; an approach for these calculations is shown in
Appendix A.3.

The byte-code generator interfaces directly to a specific (hardware dependent) quantum device driver, exporting a
stream of quantum gate codes and the locations where they must be executed. Quantum gate codes are still hardware
independent: the translation to the real hardware primitives takes place at this stage. This allows for a very simple
way to substitute an emulator to the real device. The device driver can implement additional specific optimisations
and error correction tools.

What is appealing here is that all this machinery can be implemented by using a set of libraries and a standard
compiler for an object oriented language. Our group has produced a prototype for these ideas using the C++ [18]
language.

A.2 Implementation of controlled circuits

This appendix introduces a possible approach for the construction of multi-controlled circuits. Though it is not part
of the language definition and, to some extent, dependent on a particular choice for the elementary gate set, this
approach shows that multi-controlled operators can be implemented with the same space and time complexity as the
corresponding uncontrolled ones. Many ideas in the following are taken from the classic paper by Barenco et al. [22]
and extended with the notion of parallelisation of homogeneous gates introduced in Section 3.3.

First, one needs to recognise that the controlled version of each gate in the chosen set of elementary gates
{H, Rk, CRk

}k∈N can be implemented by a circuit with depth bounded by a global constant. The controlled Rk is
CRk

itself, which is a primitive, so that only the construction of CH and CCRk
has to be shown.

The construction of CH is quite easy; first, H is decomposed into a sequence of three rotations around the z, x
and z-axis (Euler angles decomposition, though usually the chosen axes are z and y):

H = i Rz

(π

2

)
Rx

(π

2

)
Rz

(π

2

)
.

Since HZH = X , the Rx rotation can be turned into a Rz rotation with the same argument between two Hadamard
matrices. The Rz(π/2) matrix is the same as e−i π

4 R2, hence:

H = i
(
e−i π

4
)3

R2HR2HR2 = e−i π
4 R2HR2HR2.

The previous relation can be turned into a circuit for CH by controlling the three phase shifts (since H2 is the identity)
and providing the phase factor with a phase shift R†

3 on the control line:

H
�−→

2 H 2 H 2
3†

The doubly controlled phase shift CCRk
can be built by adapting a circuit known in literature26 for the Toffoli gate

(the symbols k1 and k2 stand for k + 1 and k + 2 respectively):

k

�−→
H 1 H k

†
2 H 1 H k2 H 1 H k

†
2 H 1 H k2

k1

This construction could be generalised to multi-controlled phase shifts, but the depth would scale exponentially with
the number of controls. It is easy to see that this circuit performs CCRk

correctly. Whenever one of the control qubits
is found in the | 0 〉 state, all the gates on the target line cancel out and CRk+1 between the controls has no effect.
When the control qubits are found in | 11 〉 the following relation holds:

XRk+2 =
(

0 φk+2

1 0

)

=⇒ A = XR†
k+2XRk+2 = φ∗

k+2Rk+1 =⇒ φk+1A
2 = Rk.

26 See Figure 4.9 in page 182 in [1].

198 The European Physical Journal D

n controls






| 0 〉






AND





garbage

�−→ AND

| 0 〉






m targets










| 0 〉

Fig. 5. (a) The circuit on the left shows the implementation of the coincidence circuit, that which calculates the AND of all
the n control lines. n − 1 ancilla qubits prepared in the | 0 〉 state are needed, including that which holds the result of the
computation. If independent Toffoli gates are performed in parallel, the circuit depth grows like log n. The adjoint of the circuit
must be applied at the end of the controlled circuit for properly uncomputing the ancillae. (b) The circuit on the right shows
how the qubit holding the AND of all the controls can be “copied” enough times to allow for a parallel implementation of m
independent operations; indeed this is not a copy but the transformation (α| 0 〉 + β| 1 〉) ⊗ | 0 . . . 0 〉 → α| 0 . . . 0 〉 + β| 1 . . . 1 〉
which leads to a many-particle entangled state. The circuit of course requires m− 1 additional qubits, to be uncomputed at the
end. The depth of the copying and uncopying section grows like log m.

The depth of this circuit is a constant, independently from the parameter k. A Toffoli gate (doubly controlled NOT)
can be obtained by enclosing a CCR1

with two Hadamard matrices on the target line, since HR1H = HZH = X . For
the same reason, the CNOT gate can be built using CR1 .

With n − 1 Toffoli gates and n − 1 ancilla qubits prepared in the | 0 〉 state it is possible to calculate the AND
of a n-qubit register; if independent Toffoli gates can be applied in parallel the circuit depth grows like log n. The
construction is optimal when n is a power of two27. An example of this coincidence circuit for n = 7 is shown in
Figure 5.

Once the qubit holding the (quantum) AND of all the controls is ready, it can be used to perform the controlled
operations. Since however it is unlikely that a single physical system could be used to control at the same time a
number of different qubit lines, this would prevent parallelisation in the controlled operator, changing its complexity.
A workaround consists in “copying” the single control into m qubits, m being the maximum number of parallel gates in
a single time slice of the uncontrolled operation. Indeed this consists in the transformation (α| 0 〉+β| 1 〉)⊗| 0 . . . 0 〉 →
α| 0 . . . 0 〉 + β| 1 . . . 1 〉, which has a logarithmic complexity28. Each of the m independent controlled operations can
then be performed using a different qubit as control (see Fig. 5).

The size of the register to be fed into the controlled operator is m + n (n controls and m targets). The number
of additional qubits to be used as ancillae is m + n − 2, therefore the ratio between the space requirements and the
operator “size” is less than 2. The complexity of the calculation and uncomputation of the AND of all the controls is
log n; that of the control copy is log m. These values have to be compared with a (likely) polynomial complexity in m
for the uncontrolled operator.

A.3 Techniques for managing qubit addresses

These appendix, and the scheme in Figure 6, detail a possible approach for managing qubit addresses. The first part
explains how the specifications of circuits and registers are matched to calculate which qubit locations the LLP must be
executed on. The second part shows how to implement qubit line swaps as classical operations instead of as hardware
ones, as suggested in page 187.

Quantum operators (Sects. 3.2 and 3.3) are stored as sequences of time slices, each of which is specified by one or
more index lists. Each quantum register (Sect. 3.1) is specified by a list of addresses. Therefore, there is a common basic
data structure, a “list”, which can be implemented by ordered sets of integer numbers (not containing duplicates).
The most important list operation is a transformation T which takes two lists as input and uses the elements of the
former as indexes to select some elements from the latter. In other words, if a and b are lists, then Ta(b) is a list whose
ith element is bai .

27 This is because the first bunch of Toffoli gates calculates n/2 ANDs, the second bunch half of that and so on, until the
number of gates is one, hence n/2q ∼ 1 where q is the number of steps.
28 During the first step the control is used to perform one copy, then the two qubits can be used during the second step for
two copies and so on, hence

∑q−1
j=0 2j ∼ 2q ∼ m where q is the number of steps and scales as log m.

S. Bettelli et al.: Toward an architecture for quantum programming 199

H

H

H

r
e
g
i
s
t
e
r

quantum
operation

classical
permutation

c
i
r
c
u
i
t

index to
address

translation

index to
address

translation

address
permutation

no quantum
commands

modify
permutation

quantum
device

Fig. 6. This figure visualises the difference between the treatment of a real quantum operation and a classical permutation. In
the first case (a time slice of Hadamard matrices) the index list in the time slice is used to select some of the addresses contained
in the quantum register object. These addresses are then subject to a further translation (a permutation) before being fed into
the quantum device. In the second case (a swap time slice) the run time environment runs only the first translation, then uses
the result in order to modify the permutation function for the following time slices. This change affects all the registers and is
thus indistinguishable from a hardware swap for what concerns the programmer.

The following example will show how T is used for matching operators with registers. The time slice in
the inset on the right is specified by the single index list � = (0, 2, 3), and represents the circuit H⊗I⊗H⊗H .
When it is executed on a quantum register with associated address list r = (r0, r1, . . .), the language run
time environment must pair the elements of � and r, forming a new list r̄ = T�(r) = (r�0 , r�1 , . . .) which in
the current example gives r̄ = (r0, r2, r3).

0
1
2
3 H

H

H

The T� transformation corresponds to the “index to address translation” stage for the time slice of Hadamard
gates in Figure 6. The r̄ list is not immediately sent to the quantum device, for reasons which will be apparent
later, but undergoes a further mapping29 which implements the “address permutation” P in Figure 6: r̄ → P(r̄) =
(Pr̄0 ,Pr̄1 , . . .). This translation, though different in nature from the previous one, can use the very same algorithm if
a list p = (P0,P1, . . .) is provided; in this case P(r̄) is equal to Tr̄(p). Summarising, if a time slice represents a real
quantum operation, the addresses which are sent to the quantum device are TT�(r)(p) for each list � in the slice.

The behaviour of the language run time environment is however different if the time slice represents a classical
permutation, like a “qubit line swap”, which is the action of exchanging the quantum state of two qubits. This action
can be implemented by three CNOT gates as shown in the following circuit decomposition:

is equivalent to .

This circuit shows that the exchange is a legal quantum operation and that it can be implemented by sending the
appropriate control commands to the quantum device. It is however also obvious that the additional mapping P
between the qubit addresses in the quantum registers and the qubit locations in the quantum device can be used in
order to achieve the same result; in this case it is sufficient to modify the list p appropriately.

This approach is preferable for two reasons. First, it concerns only the classical machine, hence leading to a smaller
number of quantum operations to be actually performed. Second, it modifies the addresses which are sent to the
quantum device transparently to the registers: this means that if two registers overlap and one of them undergoes
a number of qubit line swaps, subsequent mappings of the addresses of the other one are influenced too. Therefore,
the programmer can still think as if the qubit line swap was a real quantum operation. The additional mapping P is
sufficient to implement the QSwap quantum operator, described in page 187.

In the insert on the right a time slice for a qubit line swap operation can be seen; this slice needs
two index lists, the corresponding elements of which are the line indexes to be exchanged. The two lists
in the example are � (0) = (0, 1) and � (1) = (3, 2). The first stage of address translation is the same as
before, the two lists are combined with the register to form r̄ (0) = T�(0)(r) = (r0, r1) and r̄ (1) = T�(1)(r) =
(r3, r2).

0
1
2
3

The swaps can then be easily implemented by transposing the r̄
(0)

i th and the r̄
(1)

i th elements of the list p for each
valid i; in the example, this means transposing pr0 with pr3 and pr1 with pr2 . The transposition preserves the property
of P of being a permutation. Summarising, if a time slice represents a qubit line swap no commands are sent to the
quantum device; instead, for each address pair (ai, bi), where ai is the ith element of T�(0)(r) and bi is the ith element
of T�(1)(r), the elements pai and pbi are transposed in the list p.

29 This mapping is indeed a permutation since each address must correspond to a physical location, and two distinct addresses
must map to two distinct locations.

200 The European Physical Journal D

References

1. M.A. Nielsen, I.L. Chuang, Quantum Computation and
Quantum Information (Cambridge University Press New
York, NY, 2000)

2. R. Cleve, A. Ekert, C. Macchiavello, M. Mosca, Proc. Roy.
Soc. Lond. A 454, 339 (1998), quant-ph/9708016

3. D.P. DiVincenzo, Fortschr. Phys. 48, 771 (2000),
quant-ph/0002077

4. D. Deutsch, Proc. Roy. Soc. Lond. A 425, 73 (1989)
5. E. Bernstein, U. Vazirani, Proc. of the 25th ACM Sympo-

sium on the Theory of Computation (1993), pp. 11-20
6. A.C. Yao, Proc. of the 34th IEEE Symposium on Foun-

dations of Computer Science (1993), pp. 352-361, also
available at http://feynman.stanford.edu/qcomp/yao/

index.html

7. E.H. Knill, Conventions for Quantum Pseudocode, unpub-
lished, LANL report LAUR-96-2724

8. J.W. Sanders, P. Zuliani, Math. Progr. Constr. 1837,
80 (2000), also as TR-5-99 (1999), Oxford Univer-
sity, available at http://web.comlab.ox.ac.uk/oucl/

publications/tr/index.html

9. P. Zuliani, IBM J. Res. Develop. 45, 807 (2001), also as
TR-11-00, Oxford University, available at
http://web.comlab.ox.ac.uk/oucl/publications/tr/

index.html

10. B. Ömer, Master thesis (theoretical physics), 1998,
http://tph.tuwien.ac.at/~oemer/qcl.html

11. B. Ömer, Master thesis (computer science), 2000,
http://tph.tuwien.ac.at/~oemer/qcl.html

12. M.A. Nielsen, I.L. Chuang, Phys. Rev. Lett. 79, 321
(1997), quant-ph/9703032

13. E.H. Knill, M.A. Nielsen, “Theory of quantum compu-
tation”, Supplement III, Encyclopaedia of Mathematics
(Summer 2001), quant-ph/0010057

14. J.I. Cirac, P. Zoller, Phys. Rev. Lett. 74, 4094 (1995)
15. D. Coppersmith, “An Approximate Fourier Transform

Useful in Quantum Factoring”, unpublished, Technical re-
port IBM, Research report 19642, IBM, 07/12/1994

16. P.W. Shor, SIAM J. Comp. 26, 1484 (1997), also as
quant-ph/9508027

17. L.K. Grover, Proc. of the 28th Annual ACM Symposium
on the Theory of Computing (STOC) (1996), pp. 212-219,
quant-ph/9605043

18. B. Stroustrup, The C++ Programming Language, 3rd edn.
(Addison Wesley Longman, Reading, MA, 1997)

19. T.G. Draper, “Addition on a Quantum Computer”, un-
published, quant-ph/0008033

20. Y. Lecerf, C. R. Acad. Fr. Sci. 257, 2597 (1963)
21. C.H. Bennett, IBM J. Res. Dev. 17, 525 (1973)
22. A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVincenzo, N.

Margolus, P. Shor, T. Sleator, J. Smolin, H. Weinfurter,
Phys. Rev. A 52, 3457 (1995), quant-ph/9503016

